News & Views
Substrate Forges Pathway for Stem Cell Factories
Aug 17 2015
Experts at The University of Nottingham have discovered the first fully synthetic substrate with potential to grow billions of stem cells.
The £2.3m research project ‘Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation’* was led by Morgan Alexander, Professor of Biomedical Surfaces in the School of Pharmacy and Chris Denning, Professor of Stem Cell Biology in the School of Medicine and funded by the Engineering and Physical Sciences Research Council (EPSRC). The material could provide an off-the-shelf product for clinical use in the treatment of the heart, liver and brain.
Professor Alexander, Director of the Interface and Surface Analysis Centre said: “The possibilities for regenerative medicine are still being researched in the form of clinical trials. What we are doing here is paving the way for the manufacture of stem cells in large numbers when those therapies are proved to be safe and effective.”
Using a high throughput materials discovery approach the research team has found this man-made material free from possible contamination and batch variability.
Professor Denning, whose field is in cardiac stem cell research, said: “The field of regenerative medicine has snowballed in the last five years and over the coming five years a lot more patients will be receiving stem cell treatments. Clinical trials are still in the very early stages. However, with this kind of product, if we can get it commercialised and validated by the regulators it could be helping patients in two to three years.”
*Published in ‘Advanced Materials’.
Digital Edition
LMUK 49.7 Nov 2024
November 2024
News - Research & Events News - News & Views Articles - They’re burning the labs... Spotlight Features - Incubators, Freezers & Cooling Equipment - Pumps, Valves & Liquid Hand...
View all digital editions
Events
Nov 18 2024 Shanghai, China
Nov 20 2024 Karachi, Pakistan
Nov 27 2024 Istanbul, Turkey
Jan 22 2025 Tokyo, Japan
Jan 22 2025 Birmingham, UK