• Why Microscopy is Improving, Thanks to Our Arachnid Friends

Microscopy & Microtechniques

Why Microscopy is Improving, Thanks to Our Arachnid Friends

Sep 08 2016

Spiders – some people hate them; some people love them. Scientists involved in microscopy will surely be the latter, after the latest discovery at Bangor University. The scientists in the north of Wales, as well as those at Oxford University, have found a new use for spiders’ silk. It’s thought the new discovery could drastically improve microscopic research.

Superlens

Spider silk, the scientists have discovered, can actually enhance the magnification of a microscope by up to three times. Because of the basic principles of light, it has only previously been possible to view structures as low as 200 nanometres. This is the smallest possible size of bacteria, so it’s still pretty tiny. However, adding the silk of a particular spider opens up the possibility of even smaller structures being examined.

“These lenses could be used for seeing and viewing previously ‘invisible’ structures, including engineered nano-structures and biological micro-structures as well as, potentially, native germs and viruses,” said Oxford University’s Professor Fritz Vollrath.

Orb weaver

It isn’t just any spider silk that they have used. Golden silk orb-weavers, known for their particularly impressive webs, are the scientists’ choice in this case. Found throughout the world, this genus of spider gets its name from the golden colour of their spun silk in the sunlight. They are also known as Nephila, or banana spiders, but how exactly is the silk applied to a microscope?

“"In much the same was as when you look through a cylindrical glass or bottle, the clearest image only runs along the narrow strip directly opposite your line of vision, or resting on the surface being viewed, the single filament provides a one-dimensional viewing image along its length,” explains Professor Vollrath.

Scientists have actually been searching for a way to increase the zoom of microscopes for decades. Superlenses have been created in recent years. But as the new publication states, “Fabrication of these superlenses is often complex and requires sophisticated engineering processes”. It’s no surprise, then, that this revelation is being dubbed as a ‘rewriting of the rules’ of microscopy.

Enhanced microscopy

It’s not just Bangor and Oxford that are looking to break the boundaries of microscopy. While they have made a breakthrough with the discovery of golden orb silk, the scientists at the University of Huddersfield are looking at other methods of magnification, enabling them to examine materials smaller than 100 nanometres. Find out more in ‘Studying Materials at the Nanoscale: University of Huddersfield Offers Unique Facilities’.


Digital Edition

ILM 49.5 July

July 2024

Chromatography Articles - Understanding PFAS: Analysis and Implications Mass Spectrometry & Spectroscopy Articles - MS detection of Alzheimer’s blood-based biomarkers LIMS - Essent...

View all digital editions

Events

ADLM 2024

Jul 28 2024 San Diego, CA USA

InaLab 2024

Jul 30 2024 Jakarta, Indonesia

Miconex

Jul 31 2024 Chengdu, China

ACS National Meeting - Fall 2024

Aug 18 2024 Denver, CO, USA

EMC2024

Aug 25 2024 Copenhagen, Denmark

View all events