Mass spectrometry & spectroscopy
What is a Safe Coliform Level?
May 21 2022
Found in water, soil and the faecal matter of warm-blooded animals, Coliform bacteria are used as “indicators” to assess the quality of drinking water. After a sample is collected, laboratory tests reveal what is known as a total Coliform count. This is used to evaluate the cleanliness of the water source and determine if it’s safe for consumption.
The role of Coliform count
Governments and local municipalities around the world rely on Coliform count to monitor drinking water quality and prevent outbreaks of infections such as Escherichia coli (E. coli). With more than 1400 species of water-borne pathogens to test for, targeting individual strains is inefficient and unreliable.
“It is neither physically nor economically feasible to test for all pathogens that may be present in drinking water,” reads a statement released by NSW Health. “For this reason tests are carried out for bacteria, which are present in faeces and indicate contamination of drinking water.”
With a total Coliform count, scientists can detect abnormally high bacteria levels, which can indicate the presence of disease-causing pathogens. As Coliform bacteria are colourless, odourless and tasteless the only way to calculate concentrations is with laboratory tests. In most developed countries, safe Coliform levels are “none detectable” per 100mL sample. This includes the UK, Canada, Australia and the United States. Anything higher is considered a risk and must be investigated.
Improving global water quality
In an article published in the peer-reviewed journal Pathogens, the authors describe waterborne pathogens as a “global concern for worldwide public health”. The article stresses that as a key driver of severe illness and fatalities around the world, “the control, monitoring and application of regulations for water quality are in urgent need.” Coliform testing plays an important role in monitoring water quality and reducing waterborne illnesses around the world.
“Pathogen indicators need to be continually improved since a large number of new emerging pathogens are causing water-related diseases and waterborne outbreaks,” reads the Pathogens article. “The implementation of Quantitative Microbial Risk Assessment (QMRA) needs to be adapted to estimate the level of risk from different pathogens for better understanding of the dynamics of microbial populations in drinking water systems, and to identify the most effective strategies to be implemented to reduce the health risk and to improve water quality.”
Managing the risks of water and foodborne illness
World Vision estimates that waterborne diseases cause more than 3 million global deaths per year. However water isn’t the only source of pathogens. Food is also a major risk, with bacteria such as Salmonella, Norovirus and Campylobacter found in sources such as raw meat, milk and reheated foods. Find out more about the risks and how they can be managed in ‘Bacteria in Food - Types, Testing & Problems’
Digital Edition
Lab Asia Dec 2025
December 2025
Chromatography Articles- Cutting-edge sample preparation tools help laboratories to stay ahead of the curveMass Spectrometry & Spectroscopy Articles- Unlocking the complexity of metabolomics: Pushi...
View all digital editions
Events
Jan 21 2026 Tokyo, Japan
Jan 28 2026 Tokyo, Japan
Jan 29 2026 New Delhi, India
Feb 07 2026 Boston, MA, USA
Asia Pharma Expo/Asia Lab Expo
Feb 12 2026 Dhaka, Bangladesh



