• Project Investigates Impact of Biodiversity on Viral Vectors

News & Views

Project Investigates Impact of Biodiversity on Viral Vectors

Mar 11 2020

The spread of mosquito-borne viral diseases further into Europe, thought to be a consequence of climate change patterns, is the focus of a major new joint project which will focus on how biological diversity might influence or even control respective chains of infection.

Coordinated by the University of Bayreuth, Germany and supported by almost €1 million over the next three years from the European research network BiodivERs, the project ‘DiMoC – Diversity components in mosquito-borne diseases in the face of climate change’ will investigate diseases caused by aboroviruses that are transmitted in particular by mosquitoes, ticks, fleas, or midges. These vectors, also comprise a large number of species, which may help determine the routes of transmission and the probability of infection.

Research partners include the Bernhard Nocht Institute for Tropical Medicine in Hamburg, the Institute for Tropical Medicine in Antwerp, the Institute for Development Research in Montpellier and the National Autonomous University of Mexico. On 6 March 2020, the first meeting of the project partners took place in the Iwalewahaus of the University of Bayreuth.

Project lead Prof. Dr. Carl Beierkuhnlein, Chair of Biogeography at the University of Bayreuth said: "So, in our research project, we want to get to the bottom of the question of how chains of infection – from arboviruses to diseased organisms – develop under the influence of biological diversity. In this way, we will gain more precise insights into the causes and pathways by which some of the viral diseases transmitted by mosquitoes spread from the tropics to Europe. On the basis of these research results, well-founded recommendations for action can be developed, for example for health, environmental and development policy."

The aim is to produce a broadly based and scientifically sound report based on reliable risk assessments through empirical studies and model calculations. To this end, computer simulations will be used to develop and compare different future scenarios. These calculations will take into account not only the identified impact of biodiversity on chains of infection, but also, for example, that of landscape diversity and prevailing socio-economic conditions.

For more information visit www.uni-bayreuth.de


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

InaLab 2024

Jul 30 2024 Jakarta, Indonesia

Miconex

Jul 31 2024 Chengdu, China

View all events