• Non-Wovens as Scaffolds for Artificial Tissue

News & Views

Non-Wovens as Scaffolds for Artificial Tissue

Jul 07 2009

Medical Scientists in Germany who have been working on production of artificial cartilage using porous scaffold materials are also aiming to produce tendons and blood vessels using the same techniques. Cells placed on a porous non-woven frame made of, for example polymer fibres, have potential to grow and form tissue. Whether the cells will grow properly into tissue, however, depends on many factors. For instance, the cells only form cartilage if they are subjected to loads comparable with those in the body. To form cartilage the tissue needs to experience the pressure applied by every step. By contrast, blood vessel tissue needs the pulsation of the blood.

Exactly how these forces exert themselves on cell walls when the fibre scaffolds are pulled, or have liquid passing through them has been quite difficult to describe or determine. Now research scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and Halle have developed a simulation model which answers these questions and characterises the fleeces. “The simulation reproduces the mechanical properties of the fleeces and the transport processes – the software can therefore also calculate how nutrients are transported to the cells and metabolic products are transported away from the cells when a liquid flows by,” explains Dr. Raimund Jaeger, Group Manager at the IWM.

“Understanding these processes can be helpful for cell culture.” To produce the model, the research scientists initially studied the mechanical properties of the individual polymer fibres and for this purpose developed a special apparatus. On a silicon chip measuring one square centimeter, the scientists in Halle etched approximately 50 ‘microtesting machines’. They then placed and fastened the fibres over the testing machines. Under the microscope the researchers were able to observe how the fibres behave when they are pulled, how far they stretch and when they snap. As fibre-like structures are frequently encountered in nature and technology, suitable experimental techniques and simulation methods have a wide range of applications.


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

Asia Labex

Jul 03 2024 Gandhinagar, India

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

View all events