News
Two in One
May 03 2011
Scientists from the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, have revealed new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis, the bacterium that causes tuberculosis. The new findings present possible new opportunities for developing organism-specific drugs, which target the pathogen but leave other microorganisms, which are beneficial to us, untouched. Tuberculosis remains one of the largest threats to human health worldwide, and one of the most frequent causes of death in HIV patients. With the increasing emergence of strains of Mycobacterium tuberculosis that are hyper-resistant to drugs, it becomes ever more urgent that novel treatments be developed, and the search for novel strategies for drug development is an important step in this process.
In the current study, Matthias Wilmanns* and his group at EMBL identified a multi-tasking enzyme from Mycobacterium tuberculosis that catalyses reactions on two different molecules, or substrates. In most organisms, cells need two specific enzymes, known as HisA and TrpF, in order to produce two essential amino acids – histidine and tryptophan. However, in Mycobacterium tuberculosis, the encoding gene for TrpF is missing, and the two reactions are instead catalysed by a single enzyme, which is able to recognize and bind to two different substrates. Using this enzyme, known as PRiA as a model, the researchers were able to unravel the hitherto unknown mechanism of bi-substrate specific binding observed in this group of bacteria.
“When we solved the three-dimensional structure of PriA, we found that it has the unique ability to form two different substrate-specific active sites,” Wilmanns said: “it can form a reaction-specific active site, or undergo what we call ‘substrateinduced metamorphosis’ to form a different active site.”
To further verify these observations, Wilmanns and colleagues screened 20,000 small molecule compounds, and identified a handful which inhibited both PriA-catalysed reactions but had no effect on TrpF activity. “We believe that this ability for bi-substrate catalysis in Mycobacterium tuberculosis could be a new opportunity for future drug development,” Wilmanns concluded: “This organism-specific reaction process could be exploited, since only the pathogen but none of the other bacteria living in or on humans, many of which are important for our well being, would be targeted.”
Digital Edition
Lab Asia Dec 2025
December 2025
Chromatography Articles- Cutting-edge sample preparation tools help laboratories to stay ahead of the curveMass Spectrometry & Spectroscopy Articles- Unlocking the complexity of metabolomics: Pushi...
View all digital editions
Events
Jan 21 2026 Tokyo, Japan
Jan 28 2026 Tokyo, Japan
Jan 29 2026 New Delhi, India
Feb 07 2026 Boston, MA, USA
Asia Pharma Expo/Asia Lab Expo
Feb 12 2026 Dhaka, Bangladesh



