• Molecular Scale Resolution Possible with N-SIM Microscopy System

Microscopy & Microtechniques

Molecular Scale Resolution Possible with N-SIM Microscopy System

Mar 25 2010

Nikon Instruments is proud to announce that Nikon Corporation has signed an agreement with the University of California, San Francisco Office of Technology Management for Structured Illumination Microscopy (SIM) technology. Under the terms of the agreement, UCSF will license its technology to Nikon to make N-SIM enabled microscopes designed to realise resolution higher than can be achieved by conventional optical microscopes. Optical microscopes are essential for the clear observation of tissues and cells in life science research. However, if multiple objects such as protein molecules cluster at distances of less than 200nm apart, conventional optical microscopes cannot identify them as single objects, necessitating the use of instrumentation such as electron microscopes. Nikon’s super resolution fluorescence microscopy technology greatly exceeds the resolution limits of conventional optical microscopes, making it possible to view microstructures and nanostructures of fixed and living cells with molecular-scale resolution.

Nikon’s N-SIM microscopy system can produce two times the resolution of conventional optical microscopes by combining SIM technology licensed from UCSF and based on the world renowned Eclipse Ti research inverted microscope, with Nikon’s legendary CFI Apo TIRF 100x oil objective lens, developed using unique optical technologies and manufacturing techniques. The SIM technology was developed by Mats G.L. Gustafsson, PhD, John W. Sedat, PhD and David A. Agard, PhD, of UCSF; Agard is currently a Howard Hughes Medical Institute (HHMI) investigator at UCSF and Gustafsson is a group leader at HHMI’s Janelia Farm Research Campus.

Effective for live-cell imaging, N-SIM provides the fastest imaging capability in the industry, with a time resolution of 0.6 sec/frame. The newly developed TIRF-SIM illumination technique enables total internal reflection fluorescence (TIRF) observation with higher resolution than conventional TIRF microscopes and gives more detailed structural information near the cell membrane. In addition, another new 3D-SIM illumination technique has the capability of optical sectioning of specimens, enabling the visualisation of more detailed cell spatial structures. Nikon’s official name for the commercialised system is Super Resolution Microscope N-SIM, and it will be available in May 2010.


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

Asia Labex

Jul 03 2024 Gandhinagar, India

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

View all events