• Advanced Imaging Systems to Follow Fluorescent RNA Movement in Living Cells

Microscopy & microtechniques

Advanced Imaging Systems to Follow Fluorescent RNA Movement in Living Cells

Scientists at the Department of Biochemistry, the University of Oxford, rely on a number of powerful imaging systems, several of which are supplied by Preston based Image Solutions (UK) Ltd. Their efforts are directed to understand how cells become polarised during embryonic development.

Defects in this polarisation process are known to cause birth defects, and also are similar to the processes that go wrong in Alzheimer’s disease and Fragile X Syndrome. By studying neurons of the fruit fly Drosophila, they are trying to understand how RNA, a molecule related to DNA, moves and becomes localised during this process.

“We know that RNA has a role in its own right and one that can be localised in the cytoplasm a long way from the cell nucleus. A very good example of this occurs in Drosophila neurons, where the RNA can be localised at the cell extremities, where it is regulated and controlled locally. This local control and regulation is known to be important in human diseases such as Alzheimer’s and Fragile X Syndrome,” explained Professor Ilan Davis, Welcome Trust Senior Research Fellow with the Department of Biochemistry.

Professor Davis and his team use three DeltaVision Core systems and an OMX ‘super resolution’ instrument to study how RNA behaves in real time, in living cells. The DeltaVision Core is designed as an imaging workhorse to image a large number of probes and samples with great precision. The OMX is a more specialised and advanced instrument that uses three dimentional structured illumination technology, developed by a team at the University of California San Francisco (UCSF): this doubles the spatial and axia  resolution of a widefield light microscope. Additionally, this system can deliver high temporal resolution data for the study of fast dynamics in widefield mode. One DeltaVision Core has been modified to work with an upright Olympus platform microscope, rather than the usual inverted microscope. Samples can therefore, be viewed from above. “This makes a big difference to us because we can image RNA as it moves in axons of motor neurons. We have also made modifications to allow micro-injections from the stage plate in order to carry out neurophysiological experiments,” said Professor Davis.

The DeltaVision OMX, on the other hand, gives the Department the ability to image at speeds of up to 100 frames/second with excellent spatial resolution.


Digital Edition

Lab Asia Dec 2025

December 2025

Chromatography Articles- Cutting-edge sample preparation tools help laboratories to stay ahead of the curveMass Spectrometry & Spectroscopy Articles- Unlocking the complexity of metabolomics: Pushi...

View all digital editions

Events

Smart Factory Expo 2026

Jan 21 2026 Tokyo, Japan

Nano Tech 2026

Jan 28 2026 Tokyo, Japan

Medical Fair India 2026

Jan 29 2026 New Delhi, India

SLAS 2026

Feb 07 2026 Boston, MA, USA

Asia Pharma Expo/Asia Lab Expo

Feb 12 2026 Dhaka, Bangladesh

View all events