• Quantum Computer - a Stage Closer with Silicon Breakthrough

News & Views

Quantum Computer - a Stage Closer with Silicon Breakthrough

Aug 24 2010

The remarkable ability of an electron to exist in two places at once has been controlled in the most common electronic material – silicon – for the first time. The research findings, by a UK–Dutch team from UCL, the University of Surrey, Heriot-Watt University in Edinburgh, and the FOM Institute for Plasma Physics near Utrecht - marks a significant step towards the making of an affordable ‘quantum computer’. According to the research paper the scientists have created a simple version of Schrodinger’s cat – which is paradoxically simultaneously both dead and alive - in the cheap and simple material out of which ordinary computer chips are made. "This is a real breakthrough for modern electronics and has huge potential for the future," explained Professor Ben Murdin, Photonics Group Leader at the University of Surrey. "Lasers have had an ever increasing impact on technology, especially for the transmission of processed information between computers, and this development illustrates their potential power for processing information inside the computer itself. In our case we used a far-infrared, very short, high intensity pulse from the Dutch FELIX laser to put an electron orbiting within silicon into two states at once - a so-called quantum superposition state. We then demonstrated that the superposition state could be controlled so that the electrons emit a burst of light at a welldefined time after the superposition was created. The burst of light is called a photon echo; and its observation proved we have full control over the quantum state of the atoms." And the development of a silicon based ‘quantum computer’ may be only just over the horizon. "Quantum computers can solve some problems much more efficiently than conventional computers - and they will be particularly useful for security because they can quickly crack existing codes and create uncrackable codes," Professor Murdin continued. "The next generation of devices must make use of these superpositions to do quantum computations. Crucially our work shows that some of the quantum engineering already demonstrated by atomic physicists in very sophisticated instruments called cold
atom traps, can be implemented in the type of silicon chip used in making the much more common transistor." Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology added that the findings were highly significant to academia and business alike. "Next to iron and ice, silicon is the most important inorganic crystalline solid because of our tremendous ability to control electrical conduction via chemical and electrical means," he explained. "Our work adds control of quantum superpositions to the silicon toolbox." University College London.


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

Asia Labex

Jul 03 2024 Gandhinagar, India

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

View all events