-
A red-labelled macrophage in white adipose tissue acquirees green mitochondria from neighbouring cells, including fat cells. Left, low power to show orientation of the macrophage embedded among massive adipocytes. Right, high power to show a macrophage interacting with and internalising green mitochondria from other cells in the tissue. (courtesy: Brestoff Labs) -
Dr Wentong Jia, (Postdoctoral fellow, left) and Rocky Giwa (PhD thesis candidate, right) collecting their latest data on how heparan sulfates regulate mitochondria transfer to macrophages in the Brestoff Lab.
Laboratory products
New Study Reveals the Role of Heparan Sulfate in Obesity
Mar 08 2022
AMSBIO reports how researchers at the Washington University School of Medicine have utilised their 10E4 Heparan Sulfate (HS) antibody in pioneering obesity research to quantify the role of HS in the process of intercellular mitochondria transfer to macrophages.
In recent published research, researchers from the Brestoff and Teitelbaum Labs demonstrated that adipose-tissue resident macrophages acquire mitochondria from adjacent adipocytes using HS. This process occurs in healthy conditions but is impaired in obesity. Further they have shown that genetic disruption of mitochondria uptake by macrophages reduces energy expenditure and increases diet-induced obesity in mice, indicating that intercellular mitochondria transfer to macrophages mediates systemic metabolic homeostasis.
Obesity is an increasingly common metabolic disease that affects over 40% of adults and 18% of children and adolescents in the United States and is an independent risk factor for the development of many other disorders such as type 2 diabetes, cardiovascular diseases, and cancer.
Heparan sulfate is a highly sulfated polysaccharide, synthesised as the glycosaminoglycan component of heparan sulfate proteoglycans (HSPGs), that is widely distributed on cell surfaces and basement membranes in mammals. It participates in important biological processes due to it displaying specific interactions with many biologically active proteins. AMSBIO is a leading supplier of high quality Heparan Sulfate antibodies from the important clones (JM403, 10E4 and 3G10), which are ideal tools for investigating the binding of HS in different areas of biological research including infection, cancer, and cell signalling.
Head of the group, Professor Jonathan Brestoff commented: “Mitochondria are the power plants of cells, and it has long been assumed that they are made in one cell and never leave. We discovered that is not really the case and found that fat cells give some of their mitochondria to an immune cell type called macrophages. In obesity, this transferring of mitochondria between cells goes awry, contributing to faster weight gain and worse metabolism. Using a tool called CRISPR, we screened the entire genome and figured out that cells trade mitochondria using a special type of sugar called heparan sulfate, which we think acts like a loading dock for receiving cargo like mitochondria. When we delete heparan sulfates on macrophages, mice get fat. This suggests to us that it is probably good for cells to trade mitochondria with each other. Our team is now trying to figure out how this mysterious and surprising process of mitochondria transfer works because we believe we can harness this biology to treat some human diseases.”
Dr Wentong Jia, a postdoctoral fellow at the Brestoff lab added “The cell surface expression of heparan sulfate, a glycosaminoglycan required for mitochondria uptake in macrophages, depends on a key glycosyltransferase named EXT1. The 10E4 antibody from AMSBIO has helped us verify that we’ve successfully prevented Heparan Sulfate from being synthesised in cells that lack EXT1.”
“I find it fascinating that cells use heparan sulfates to take up mitochondria,” said Rocky Giwa, a PhD candidate in the Brestoff Lab. “I wonder if there’s a correlation between the amount or composition of heparan sulfates and a cell’s ability to efficiently take up mitochondria from other cells. Since the various HS antibodies have unique specificities, the different clones can help us start to attack that question.”
AMSBIO offers a comprehensive range of high quality Heparan Sulfate (HS) antibodies from F69-3G10, F58-10E4 and JM403 clones, which are ideal for targeted binding of HS in Heparan Sulfate Proteoglycans (HSPG) research.
More information online
Digital Edition
Lab Asia Dec 2025
December 2025
Chromatography Articles- Cutting-edge sample preparation tools help laboratories to stay ahead of the curveMass Spectrometry & Spectroscopy Articles- Unlocking the complexity of metabolomics: Pushi...
View all digital editions
Events
Jan 21 2026 Tokyo, Japan
Jan 28 2026 Tokyo, Japan
Jan 29 2026 New Delhi, India
Feb 07 2026 Boston, MA, USA
Asia Pharma Expo/Asia Lab Expo
Feb 12 2026 Dhaka, Bangladesh



