• Novel Bioaffinity-MS Tandem System Developed

Chromatography

Novel Bioaffinity-MS Tandem System Developed

Apr 08 2011

Researchers at the University of Konstanz, have for the first time successfully developed a novel on-line bioaffinity-electrospray ionisation (ESI) mass spectrometry approach, which enables the simultaneous label-free detection, identification and quantification of protein–ligand interactions. Combining the sam5™ surface acoustic wave (SAW) biosensor from SAW Instruments directly with ESI-MS has enabled the direct connection of protein-ligand KD analysis with their subsequent quantification and structural characterisation by mass spec.

This new tandem SAW-ESI-MS system has been developed in the laboratory of Professor Michael Przybylski at the University of Konstanz and recently published. Biosensors have previously only ever been connected to mass spec indirectly in a MALDI-TOF format where crystallised sample spots are analysed. The new system is unique, as the first that directly connects liquid flow from the SAW biosensor directly into the ESI-MS via a standard desalting interface – an approach impossible with other available biosensors. This novel set-up enables direct quantitative determinations of protein-ligand complexes by SAW-yielded dissociation constants (KD) from low nanomolar to sub-micromolar sample concentrations.

The Przybylski team observed the key advantages of SAW in comparison to classical immuno-analytical bioaffinity techniques to be the direct and rapid determination of association/dissociation constants from small and dilute sample amounts, without the need for labelling or recalibration for buffer changes. Furthermore, the sam5 biosensor is able to make detection measurements in complex biological samples e.g. crude brain samples, blood or cell lysates.

The new SAW-ESI-MS technique has been successfully applied by the Przybylski group to a number of clinically relevant applications for biomarker discovery, analysis and epitope mapping. These include human ß-amyloid peptides (Alzheimer’s Disease), Substance P peptidecalmodulin complex, tyrosine-nitrated peptides (neurotoxic events) and human ßsynuclein (Parkinson’s Disease). Indeed, no details on affinity binding and KD determination of the anti-α-synuclein-human α-synuclein complex have previously been reported.

The sam5™ biosensor instrument from SAW Instruments is a unique tool for advanced real-time biomolecular interaction and kinetic studies. The sam5™ is a peerless biosensor utilising Surface Acoustic Wave (SAW) technology for the label-free detection of real-time binding and structural events. XA


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

InaLab 2024

Jul 30 2024 Jakarta, Indonesia

View all events