• Temperature Controlled Stage Used to Examine Atmospheric and Vacuum Frying of Starch Granules in Oil and Water

Microscopy & Microtechniques

Temperature Controlled Stage Used to Examine Atmospheric and Vacuum Frying of Starch Granules in Oil and Water

Mar 16 2012

Linkam Scientific Instruments, have been chosen by Pontificia Universidad Católica de Chile to supply a THMS350V stage to understand the frying of starch in oil and water.

At the Pontificia Universidad Católica de Chile, a research team headed by Pedro Bouchon PhD in the Chemical and Bioprocess Engineering Department are using a Linkam THMS350V stage to examine atmospheric and vacuum frying miniaturisation of starch granules in oil and water. The chemical and structural aspects of vacuum frying are still not very well understood and so further experimentation is required to understand the process.

The goal of the group is to understand the role of different ingredients when they are processed under different conditions, studying the effect on micro and macro-structural properties, functionality, and the impact that these processed ingredients have on nutrition. The aim is to design and develop, based on scientific knowledge, new food matrices that fit new consumer demands for healthier, low fat snack products that also taste as good as the traditional ones.

The group are comparing the effect of vacuum and atmospheric frying using real-time hot-vacuum-stage microscopy. Isolated starch granules are examined for micro-structural changes during vacuum and heating in both oil and water.The Linkam THMS350V is mounted on an Olympus BX-61 light microscope and the samples are tested at different heating rates with different vacuum levels. Samples are totally immersed before frying, and real-time image capture is used to examine structural changes. Micro-structural changes are indicated by swelling and gelatinisation of the potato starch granules during heating at 15°C/min at atmospheric pressure. Granules start to swell at 64°C. As the temperature increases the granules start to lose their shape and at 100°C the granules begin to dehydrate due to water evaporation. The loss of birefringence of the granules indicates the onset of the gelatinisation process.

Pablo Cortes, a member of Pedro Bouchon's group, described how the Linkam stage has "allowed us to understand the development of the microstructure of potato starch granules in different conditions in real time. We have studied the gelatinisation process of isolated potato starch granules heated in excess water and embedded in a gluten and water matrix. This micro-structural approach has given us information of paramount importance to understand the frying and vacuum frying process."

Heating-vacuum microscopy is an essential technique to begin to understand the complex process of vacuum frying which may lead to innovative ways to prepare our food.


Digital Edition

International Labmate Buyers' Guide 2024/25

June 2024

Buyers' Guide featuring: Product Listings & Manufacturers Directory Chromatography Articles - Enhancing HPLC Field Service with fast-response, non-invasive flowmeters - Digital transformatio...

View all digital editions

Events

Asia Labex

Jul 03 2024 Gandhinagar, India

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ADLM 2024

Jul 28 2024 San Diego, CA USA

View all events