• New method for peroxides trace analysis in petroleum liquids by flow injection

Analytical Instrumentation

New method for peroxides trace analysis in petroleum liquids by flow injection

Feb 14 2023

Peroxides present a potential safety hazard during production and storage, therefore the accurate monitoring of peroxide traces is required. Most traditional analysis methods, such as ASTM D2340 and ASTM E299, are affected by oxygen (air) interference. A new method using a chemical reaction by a flow injection with an ultraviolet/visible detector resolves the air interference for the trace peroxides analysis in petroleum liquids. This flow injection analysis method, developed by Da Vinci Laboratory Solutions (DVLS), has been introduced as the DVLS Fast Peroxide Analyzer in 2020.

Analyzer Configuration

The configuration of the Fast Peroxide Analyzer (FPA) is based on Agilent HPLC hardware including:

  • a Reaction Module;
  • an AutoSampler or Sampling Valve;
  • a Variable Wavelength Detector;
  • an optional Pressure Station for pressurized liquefied gas samples contained in a cylinder.

The sample is injected into the reagent stream of acidified Iodide and transferred to the DVLS Reaction Module. The Peroxides present in the sample react with Iodide to form Iodine. The DVLS Reaction Module is designed to optimize the conversion to Iodine. The yellow-brownish color of Iodine is measured by the UV-VIS detector. OpenLab software from Agilent Technologies is used for the analysis.
In less than 5 minutes the Peroxide content is determined. The analysis results shows an excellent performance down to ppb level.

Check out the product video for a demonstration of the analysis of peroxide traces in petroleum streams.

Various Applications

Several applications notes on the FPA analysis are available.
One important application is the analysis of peroxides in 1,3-Butadiene. In the Butadiene application note the FPA analysis is compared with ASTM D5799 method for the analysis of peroxide traces in 1,3-Butadiene. Two Butadiene samples are analyzed in tenfold to measure the repeatability of the peroxides at a low level. The DVLS FPA analysis greatly improves the repeatability and estimated reproducibility of the peroxide analysis. It also significantly reduces the analysis time.

A second application note describes the analysis results of various chemical samples. The results show that the DVLS FPA can be used for a fast and accurate determination of peroxides in a wide range of chemical products. Depending on the product, detection level is quantified in sub ppb active Oxygen.

The third application note describes the analysis of peroxides in Styrene monomer using the FPA system compared with the iodometric titration method ASTM D2340. Two production batches of polymerization grade Styrene were analyzed during transshipment using both ASTM D2340 and the DVLS FPA. The analysis results show that the traces of peroxides in Styrene monomer can be analyzed fast and accurately with the FPA. The comparison with ASTM D2340 demonstrates that the FPA greatly improves the repeatability, reproducibility and as well the Lower Detection Limit of peroxides in various streams.


Digital Edition

PIN 25.2 Apr/May

May 2024

Safety - Carbon monoxide toxic and flammable gas detection Analytical Instrumentation - Density: A fundamental parameter at critical stages within the petroleum sector - Advancements and...

View all digital editions

Events

IOSC 2024

May 13 2024 New Orleans, LA, USA

OGU 2024

May 14 2024 Tashkent, Uzbekistan

ISHM 2024

May 14 2024 Oklahoma City, OK, USA

REGATEC 2024

May 15 2024 Lund, Sweden

CO2 Capture, Storage & Reuse

May 15 2024 Copenhagen, Denmark

View all events