Skip to main content

Advertisement

Log in

Nipah virus: epidemiology, pathogenesis, treatment, and prevention

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conroy G. Nipah virus outbreak: what scientists know so far. Nature 2023; [Epub ahead of print] doi:https://doi.org/10.1038/d41586-023-02967-x

  2. Srivastava S, Deb N, Roy P, Jaiswal V, Sah S, Pandey Y, Reddy Edara RS, Mohanty A, Henao-Martinez AF, Sah R. Recent Nipah virus outbreak in India: lessons and imperatives. Ther Adv Infect Dis 2023; 10: 20499361231208535

    PubMed  PubMed Central  Google Scholar 

  3. Soman Pillai V, Krishna G, Valiya Veettil M. Nipah virus: past outbreaks and future containment. Viruses 2020; 12(4): 465

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arunkumar G, Chandni R, Mourya DT, Singh SK, Sadanandan R, Sudan P, Bhargava B; Nipah Investigators People and Health Study Group. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J Infect Dis 2019; 219(12): 1867–1878

    Article  PubMed  Google Scholar 

  5. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, Wong KT, Abdullah BJ, Chua KB, Lam SK. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342(17): 1229–1235

    Article  CAS  PubMed  Google Scholar 

  6. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006; 12(2): 235–240

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rahman M, Chakraborty A. Nipah virus outbreaks in Bangladesh: a deadly infectious disease. WHO South-East Asia J Public Health 2012; 1(2): 208–212

    Article  PubMed  Google Scholar 

  8. Nikolay B, Salje H, Hossain MJ, Khan A, Sazzad HMS, Rahman M, Daszak P, Stroher U, Pulliam JRC, Kilpatrick AM, Nichol ST, Klena JD, Sultana S, Afroj S, Luby SP, Cauchemez S, Gurley ES. Transmission of Nipah virus–14 years of investigations in Bangladesh. N Engl J Med 2019; 380(19): 1804–1814

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999; 354(9186): 1257–1259

    Article  CAS  PubMed  Google Scholar 

  10. Chua KB. Introduction: Nipah virus—discovery and origin. Curr Top Microbiol Immunol 2012; 359: 1–9

    CAS  PubMed  Google Scholar 

  11. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, Kamaluddin MA, Mustafa AN, Kaur H, Ding LM, Othman G, Radzi HM, Kitsutani PT, Stockton PC, Arokiasamy J, Gary HE Jr, Anderson LJ. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 2000; 181(5): 1755–1759

    Article  CAS  PubMed  Google Scholar 

  12. Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah virus-another threat from the world of zoonotic viruses. Front Microbiol 2021; 12: 811157

    Article  PubMed  Google Scholar 

  13. Amarasinghe GK, Ayllon MA, Bao Y, Basler CF, Bavari S, Blasdell KR, Briese T, Brown PA, Bukreyev A, Balkema-Buschmann A, Buchholz UJ, Chabi-Jesus C, Chandran K, Chiapponi C, Crozier I, de Swart RL, Dietzgen RG, Dolnik O, Drexler JF, Dürrwald R, Dundon WG, Duprex WP, Dye JM, Easton AJ, Fooks AR, Formenty PBH, Fouchier RAM, Freitas-Astúa J, Griffiths A, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondō H, Kurath G, Kuzmin IV, Lamb RA, Lavazza A, Lee B, Lelli D, Leroy EM, Lǐ J, Maes P, Marzano SYL, Moreno A, Mühlberger E, Netesov SV, Nowotny N, Nylund A, Økland AL, Palacios G, Pályi B, Pawęska JT, Payne SL, Prosperi A, Ramos-González PL, Rima BK, Rota P, Rubbenstroth D, Shī M, Simmonds P, Smither SJ, Sozzi E, Spann K, Stenglein MD, Stone DM, Takada A, Tesh RB, Tomonaga K, Tordo N, Towner JS, van den Hoogen B, Vasilakis N, Wahl V, Walker PJ, Wang LF, Whitfield AE, Williams JV, Zerbini FM, Zhāng T, Zhang YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2019. Arch Virol 2019; 164(7): 1967–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): e01875–e17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V, Yan L, Chan YP, Cross RW, Fenton KA, Broder CC, Geisbert TW. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci Rep 2016; 6(1): 30916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 2009; 5(10): e1000642

    Article  PubMed  PubMed Central  Google Scholar 

  17. Geisbert JB, Borisevich V, Prasad AN, Agans KN, Foster SL, Deer DJ, Cross RW, Mire CE, Geisbert TW, Fenton KA. An intranasal exposure model of lethal Nipah virus infection in African green monkeys. J Infect Dis 2020; 221(Suppl 4): S414–S418

    Article  CAS  PubMed  Google Scholar 

  18. Cline C, Bell TM, Facemire P, Zeng X, Briese T, Lipkin WI, Shamblin JD, Esham HL, Donnelly GC, Johnson JC, Hensley LE, Honko AN, Johnston SC. Detailed analysis of the pathologic hallmarks of Nipah virus (Malaysia) disease in the African green monkey infected by the intratracheal route. PLoS One 2022; 17(2): e0263834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, Lawrence WS, Fenton KA, Geisbert TW. A lethal aerosol exposure model of Nipah virus strain Bangladesh in African green monkeys. J Infect Dis 2020; 221(Suppl 4): S431–S435

    Article  CAS  PubMed  Google Scholar 

  20. Epstein JH, Field HE, Luby S, Pulliam JR, Daszak P. Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 2006; 8(1): 59–65

    Article  PubMed  PubMed Central  Google Scholar 

  21. Banerjee S, Gupta N, Kodan P, Mittal A, Ray Y, Nischal N, Soneja M, Biswas A, Wig N. Nipah virus disease: a rare and intractable disease. Intractable Rare Dis Res 2019; 8(1): 1–8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, Khan R, Ahmed BN, Rahman S, Nahar N, Kenah E, Comer J, Ksiazek T. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006; 12(12): 1888–1894

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 2008; 15(6): 567–572

    Article  CAS  PubMed  Google Scholar 

  24. Anderson DE, Islam A, Crameri G, Todd S, Islam A, Khan SU, Foord A, Rahman MZ, Mendenhall IH, Luby SP, Gurley ES, Daszak P, Epstein JH, Wang LF. Isolation and full-genome characterization of Nipah viruses from bats, Bangladesh. Emerg Infect Dis 2019; 25(1): 166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, Ross N, Smith I, Zambrana-Torrelio C, Tao Y, Islam A, Quan PL, Olival KJ, Khan MSU, Gurley ES, Hossein MJ, Field HE, Fielder MD, Briese T, Rahman M, Broder CC, Crameri G, Wang LF, Luby SP, Lipkin WI, Daszak P. Nipah virus dynamics in bats and implications for spillover to humans. Proc Natl Acad Sci USA 2020; 117(46): 29190–29201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 2009; 15(8): 1229–1235

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chua KB. Nipah virus outbreak in Malaysia. J Clin Virol 2003; 26(3): 265–275

    Article  PubMed  Google Scholar 

  28. Luby SP, Gurley ES. Epidemiology of henipavirus disease in humans. Curr Top Microbiol Immunol 2012; 359: 25–40

    PubMed  Google Scholar 

  29. Looi LM, Chua KB. Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol 2007; 29(2): 63–67

    PubMed  Google Scholar 

  30. Centers for Disease Control and Prevention (CDC). Outbreak of Hendra-like virus—Malaysia and Singapore, 1998–1999. MMWR Morb Mortal Wkly Rep 1999; 48(13): 265–269. Erratum in: MMWR Morb Mortal Wkly Rep 1999; 48 (16): 339

    Google Scholar 

  31. Chua KB, Wong EM, Cropp BC, Hyatt AD. Role of electron microscopy in Nipah virus outbreak investigation and control. Med J Malaysia 2007; 62(2): 139–142

    CAS  PubMed  Google Scholar 

  32. Uppal PK. Emergence of Nipah virus in Malaysia. Ann N Y Acad Sci 2000; 916(1): 354–357

    Article  CAS  PubMed  Google Scholar 

  33. Sherrini BA, Chong TT. Nipah encephalitis—an update. Med J Malaysia 2014; 69(Suppl A): 103–111

    PubMed  Google Scholar 

  34. Raval RD, Mehta M. Nipah: an interesting stance. Health Promot Perspect 2020; 10(1): 5–7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Paton NI, Leo YS, Zaki SR, Auchus AP, Lee KE, Ling AE, Chew SK, Ang B, Rollin PE, Umapathi T, Sng I, Lee CC, Lim E, Ksiazek TG. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 1999; 354(9186): 1253–1256

    Article  CAS  PubMed  Google Scholar 

  36. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, Zaki SR, Rota PA, Ling AE, Ksiazek TG, Chew SK, Anderson LJ. Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000; 181(5): 1760–1763

    Article  CAS  PubMed  Google Scholar 

  37. Chan KP, Rollin PE, Ksiazek TG, Leo YS, Goh KT, Paton NI, Sng EH, Ling AE. A survey of Nipah virus infection among various risk groups in Singapore. Epidemiol Infect 2002; 128(1): 93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McLean RK, Graham SP. Vaccine development for Nipah virus infection in pigs. Front Vet Sci 2019; 4;6: 16

    Article  Google Scholar 

  39. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, Niezgoda M, Rupprecht C, Bresee J, Breiman RF. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10(12): 2082–2087

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Luby SP, Woodward JL, Breiman RF. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007; 13(7): 1031–1037

    Article  PubMed  PubMed Central  Google Scholar 

  41. Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin Infect Dis 2009; 49(11): 1743–1748

    Article  PubMed  Google Scholar 

  42. Blum LS, Khan R, Nahar N, Breiman RF. In-depth assessment of an outbreak of Nipah encephalitis with person-to-person transmission in Bangladesh: implications for prevention and control strategies. Am J Trop Med Hyg 2009; 80(1): 96–102

    Article  PubMed  Google Scholar 

  43. Chua KB, Lam SK, Goh KJ, Hooi PS, Ksiazek TG, Kamarulzaman A, Olson J, Tan CT. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect 2001; 42(1): 40–43

    Article  CAS  PubMed  Google Scholar 

  44. McKee CD, Islam A, Rahman MZ, Khan SU, Rahman M, Satter SM, Islam A, Yinda CK, Epstein JH, Daszak P, Munster VJ, Hudson PJ, Plowright RK, Luby SP, Gurley ES. Nipah virus detection at bat roosts after spillover events, Bangladesh, 2012–2019. Emerg Infect Dis 2022; 28(7): 1384–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Institute of Epidemiology, Disease Control and Research: NIPAH Virus Update (04 March, 2023). 2023. Available at the website of iedcr.gov.bd

    Google Scholar 

  46. Satter S, Aquib W, Nazneen A, Rahman D, Ema FA, Alam AN, Rahman M, Rahman M, Qayum MO, Alam MR, Islam A, Choudhury S, Chowdhury N, Ibne Noman MZ, Mahmood A, Muntasir I, Mily S, Haque S, Barua S, Alam MS. A Comprehensive Review of Clinical Presentations of Nipah Virus Infection: Evidence Generated from Nipah Virus Outbreaks of 2023, Bangladesh. 2023. Available at the website of researchgate.net

    Google Scholar 

  47. Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010

    Article  PubMed  Google Scholar 

  48. Kumar S. Inadequate research facilities fail to tackle mystery disease. BMJ 2003; 326: 12

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol 2013; 24(3): 398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arankalle VA, Bandyopadhyay BT, Ramdasi AY, Jadi R, Patil DR, Rahman M, Majumdar M, Banerjee PS, Hati AK, Goswami RP, Neogi DK, Mishra AC. Genomic characterization of Nipah virus, West Bengal, India. Emerg Infect Dis 2011; 17(5): 907–909

    Article  PubMed  PubMed Central  Google Scholar 

  51. Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, Gurley ES, Han BA. Prioritizing surveillance of Nipah virus in India. PLoS Negl Trop Dis 2019; 13(6): e0007393

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sudeep AB, Yadav PD, Gokhale MD, Balasubramanian R, Gupta N, Shete A, Jain R, Patil S, Sahay RR, Nyayanit DA, Gopale S, Pardeshi PG, Majumdar TD, Patil DR, Sugunan AP, Mourya DT. Detection of Nipah virus in Pteropus medius in 2019 outbreak from Ernakulam district, Kerala, India. BMC Infect Dis 2021; 21(1): 162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yadav PD, Sahay RR, Balakrishnan A, Mohandas S, Radhakrishnan C, Gokhale MD, Balasubramanian R, Abraham P, Gupta N, Sugunan AP, Khobragade R, George K, Shete A, Patil S, Thankappan UP, Dighe H, Koshy J, Vijay V, Gayathri R, Kumar PJ, Rahim A, Naveen A, Nair S, Rajendran VR, Jayasree V, Majumdar T, Jain R, Viswanathan P, Patil DY, Kumar A, Nyayanit DA, Sarkale P, Waghmare A, Baradkar S, Gawande P, Bodke P, Kalele K, Yemul J, Dhaigude S, Holepannawar M, Gopale S, Chopade G, Ray S, Waghmare P, Narayan J, Mathapati B, Kadam M, Kumar A, Suryawanshi A, Jose BP, Sivadas S, Akash NP, Vimisha TV, Keerthi KV. Nipah virus outbreak in Kerala State, India Amidst of COVID-19 Pandemic. Front Public Health 2022; 10: 818545

    Article  PubMed  PubMed Central  Google Scholar 

  54. Uwishema O, Wellington J, Berjaoui C, Muoka KO, Onyeaka CVP, Onyeaka H. A short communication of Nipah virus outbreak in India: an urgent rising concern. Ann Med Surg (Lond) 2022; 82: 104599

    PubMed  Google Scholar 

  55. Thiagarajan K. Nipah virus: India’s Kerala state moves quickly to control fresh outbreak. BMJ 2023; 382: 2117

    Article  PubMed  Google Scholar 

  56. World Health Organization. Nipah Virus Infection—India. 2018. Available at the website of WHO

    Google Scholar 

  57. Ching PK, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas FF Jr, Bolo GC Jr, Sejvar JJ, Eagles D, Playford G, Dueger E, Kaku Y, Morikawa S, Kuroda M, Marsh GA, McCullough S, Foxwell AR. Outbreak of henipavirus infection, Philippines, 2014. Emerg Infect Dis 2015; 21(2): 328–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis. Animals (Basel) 2022; 13(1): 159

    Article  PubMed  Google Scholar 

  59. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 2001; 7(3): 439–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. World Health Organization. Nipah virus. 2018. Available at the website of WHO

    Google Scholar 

  61. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 307–314

    Article  CAS  PubMed  Google Scholar 

  62. Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, Mourya DT. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am J Trop Med Hyg 2012; 87(3): 576–578

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khan MS, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. EcoHealth 2010; 7(4): 517–525

    Article  PubMed  Google Scholar 

  64. Sahay RR, Yadav PD, Gupta N, Shete AM, Radhakrishnan C, Mohan G, Menon N, Bhatnagar T, Suma K, Kadam AV, Ullas PT, Anu Kumar B, Sugunan AP, Sreekala VK, Khobragade R, Gangakhedkar RR, Mourya DT. Experiential learnings from the Nipah virus outbreaks in Kerala towards containment of infectious public health emergencies in India. Epidemiol Infect 2020; 148: e90

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sendow I, Field HE, Adjid A, Ratnawati A, Breed AC, Darminto, Morrissy C, Daniels P. Screening for Nipah virus infection in West Kalimantan province, Indonesia. Zoonoses Public Health 2010; 57(7–8): 499–503

    Article  CAS  PubMed  Google Scholar 

  66. Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Mühlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2006; 2(2): e7

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA 2005; 102(30): 10652–10657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mills JN, Alim AN, Bunning ML, Lee OB, Wagoner KD, Amman BR, Stockton PC, Ksiazek TG. Nipah virus infection in dogs, Malaysia, 1999. Emerg Infect Dis 2009; 15(6): 950–952

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hooper P, Zaki S, Daniels P, Middleton D. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 315–322

    Article  CAS  PubMed  Google Scholar 

  70. Centers for Disease Control and Prevention (CDC). Update: outbreak of Nipah virus—Malaysia and Singapore, 1999. MMWR Morb Mortal Wkly Rep 1999; 48(16): 335–337

    Google Scholar 

  71. Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, Peel AJ, Barr J, Daszak P, Wang LF, Luby SP. Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh. PLoS Negl Trop Dis 2014; 8(11): e3302

    Article  PubMed  PubMed Central  Google Scholar 

  72. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD. Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002; 126(2–3): 124–136

    Article  CAS  PubMed  Google Scholar 

  73. Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY, Murri S, Loth P, Tordo N, Wild F, Horvat B, Contamin H. Experimental infection of squirrel monkeys with nipah virus. Emerg Infect Dis 2010; 16(3): 507–510

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003; 163(5): 2127–2137

    Article  PubMed  PubMed Central  Google Scholar 

  75. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 307–314

    Article  CAS  PubMed  Google Scholar 

  76. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, Daszak P. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 2011; 85(5): 946–951

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, Gongal GN, Hemachudha T. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis 2010; 10(2): 183–190

    Article  PubMed  Google Scholar 

  78. Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins T, Walston J, Ksiazek TG. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerg Infect Dis 2002; 8(9): 987–988

    Article  PubMed  PubMed Central  Google Scholar 

  79. Reynes JM, Counor D, Ong S, Faure C, Seng V, Molia S, Walston J, Georges-Courbot MC, Deubel V, Sarthou JL. Nipah virus in Lyle’s flying foxes, Cambodia. Emerg Infect Dis 2005; 11(7): 1042–1047

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hasebe F, Thuy NT, Inoue S, Yu F, Kaku Y, Watanabe S, Akashi H, Dat DT, Mai LTQ, Morita K. Serologic evidence of nipah virus infection in bats, Vietnam. Emerg Infect Dis 2012; 18(3): 536–537

    Article  PubMed  PubMed Central  Google Scholar 

  81. Iehlé C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges-Courbot MC, Rousset D, Reynes JM. Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 2007; 13(1): 159–161

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA. Evidence of henipavirus infection in West African fruit bats. PLoS One 2008; 3(7): e2739

    Article  PubMed  PubMed Central  Google Scholar 

  83. Madera S, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, DeRisi JL, Aguilar HC, Lacoste V, Dussart P, Heraud JM, Brook CE. Discovery and genomic characterization of a novel Henipavirus, Angavokely virus, from fruit bats in Madagascar. J Virol 2022; 96(18): e0092122

    Article  PubMed  Google Scholar 

  84. Quarleri J, Galvan V, Delpino MV. Henipaviruses: an expanding global public health concern? Geroscience 2022; 44(5): 2447–2459

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sah R, Mohanty A, Chakraborty S, Dhama K. Langya virus: a newly identified zoonotic henipavirus. J Med Virol 2022; 94(12): 5621–5622

    Article  CAS  PubMed  Google Scholar 

  86. Diederich S, Maisner A. Molecular characteristics of the Nipah virus glycoproteins. Ann N Y Acad Sci 2007; 1102(1): 39–50

    Article  CAS  PubMed  Google Scholar 

  87. Mohd-Qawiem F, Nawal-Amani AR, Faranieyza-Afiqah F, Yasmin AR, Arshad SS, Norfitriah MS, Nur-Fazila SH. Paramyxoviruses in rodents: a review. Open Vet J 2022; 12(6): 868–876

    PubMed  PubMed Central  Google Scholar 

  88. Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic potential of emerging paramyxoviruses: knowns and unknowns. Adv Virus Res 2017; 98: 1–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 2000; 271(2): 334–349

    Article  CAS  PubMed  Google Scholar 

  90. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BWJ. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432–1435

    Article  CAS  PubMed  Google Scholar 

  91. Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 2006; 4(1): 67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ksiazek TG, Rota PA, Rollin PE. A review of Nipah and Hendra viruses with an historical aside. Virus Res 2011; 162(1–2): 173–183

    Article  CAS  PubMed  Google Scholar 

  93. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, Daszak P, Wong KT, Shieh WJ, Zaki SR. Elucidation of Nipah virus morphogenesis and replication using ultrastructural and molecular approaches. Virus Res 2003; 92(1): 89–98

    Article  CAS  PubMed  Google Scholar 

  94. Lawrence P, Escudero-Perez B. Henipavirus immune evasion and pathogenesis mechanisms: lessons learnt from natural infection and animal models. Viruses 2022; 14(5): 936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun B, Jia L, Liang B, Chen Q, Liu D. Phylogeography, transmission, and viral proteins of Nipah virus. Virol Sin 2018; 33(5): 385–393

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P. Genomic characterization, transcriptome analysis, and pathogenicity of the Nipah virus (Indian isolate). Virulence 2023; 14(1): 2224642

    Article  PubMed  PubMed Central  Google Scholar 

  97. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA. The nature of exposure drives transmission of Nipah viruses from Malaysia and Bangladesh in ferrets. PLoS Negl Trop Dis 2016; 10(6): e0004775

    Article  PubMed  PubMed Central  Google Scholar 

  98. Satterfield BA, Cross RW, Fenton KA, Borisevich V, Agans KN, Deer DJ, Graber J, Basler CF, Geisbert TW, Mire CE. Nipah virus C and W proteins contribute to respiratory disease in ferrets. J Virol 2016; 90(14): 6326–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies—a comprehensive review. Vet Q 2019; 39(1): 26–55

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kim HS, Shin SW, Choi BG, Choi HJ. Differences over 10 years in epidemiologic and clinical features of Kawasaki disease at a single tertiary center. Clin Exp Pediatr 2020; 63(4): 157–158

    Article  PubMed  PubMed Central  Google Scholar 

  101. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001; 287(1): 192–201

    Article  CAS  PubMed  Google Scholar 

  102. Halpin K, Bankamp B, Harcourt BH, Bellini WJ, Rota PA. Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 2004; 85(3): 701–707

    Article  CAS  PubMed  Google Scholar 

  103. Noton SL, Fearns R. Initiation and regulation of paramyxovirus transcription and replication. Virology 2015; 479–480: 545–554

    Article  PubMed  Google Scholar 

  104. Hausmann S, Jacques JP, Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 1996; 2(10): 1033–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rota PA, Lo MK. Molecular virology of the henipaviruses. Curr Top Microbiol Immunol 2012; 359: 41–58

    PubMed  Google Scholar 

  106. Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural description of the Nipah virus phosphoprotein and its interaction with STAT1. Biophys J 2020; 118(10): 2470–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural description of the Nipah virus phosphoprotein and its interaction with STAT1. Biophys J 2020; 118(10): 2470–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kulkarni S, Volchkova V, Basler CF, Palese P, Volchkov VE, Shaw ML. Nipah virus edits its P gene at high frequency to express the V and W proteins. J Virol 2009; 83(8): 3982–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shaw ML, García-Sastre A, Palese P, Basler CF. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 2004; 78(11): 5633–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rodriguez JJ, Cruz CD, Horvath CM. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 2004; 78(10): 5358–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lo MK, Harcourt BH, Mungall BA, Tamin A, Peeples ME, Bellini WJ, Rota PA. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J Gen Virol 2009; 90(2): 398–404

    Article  CAS  PubMed  Google Scholar 

  112. Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008; 89(5): 1300–1308

    Article  CAS  PubMed  Google Scholar 

  113. Bankamp B, Wilson J, Bellini WJ, Rota PA. Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 2005; 336(1): 120–129

    Article  CAS  PubMed  Google Scholar 

  114. Nishio M, Ohtsuka J, Tsurudome M, Nosaka T, Kolakofsky D. Human parainfluenza virus type 2 V protein inhibits genome replication by binding to the L protein: possible role in promoting viral fitness. J Virol 2008; 82(13): 6130–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL. Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 2006; 348(1): 107–119

    Article  CAS  PubMed  Google Scholar 

  116. Grogan CC, Moyer SA. Sendai virus wild-type and mutant C proteins show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 2001; 288(1): 96–108

    Article  CAS  PubMed  Google Scholar 

  117. Yoneda M, Guillaume V, Sato H, Fujita K, Georges-Courbot MC, Ikeda F, Omi M, Muto-Terao Y, Wild TF, Kai C. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS One 2010; 5(9): e12709

    Article  PubMed  PubMed Central  Google Scholar 

  118. Freed EO. Viral late domains. J Virol 2002; 76(10): 4679–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ciancanelli MJ, Basler CF. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 2006; 80(24): 12070–12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patch JR, Han Z, McCarthy SE, Yan L, Wang LF, Harty RN, Broder CC. The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virol J 2008; 5(1): 137

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang YE, Park A, Lake M, Pentecost M, Torres B, Yun TE, Wolf MC, Holbrook MR, Freiberg AN, Lee B. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 2010; 6(11): e1001186

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tamin A, Harcourt BH, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA. Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 2002; 296(1): 190–200

    Article  CAS  PubMed  Google Scholar 

  123. Frisén J, Holmberg J, Barbacid M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 1999; 18(19): 5159–5165

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 2004; 50(3): 490–499

    Article  CAS  PubMed  Google Scholar 

  125. Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 2002; 76(22): 11186–11198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thakur N, Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect 2019; 21(7): 278–286

    Article  CAS  PubMed  Google Scholar 

  127. Aguilar HC, Aspericueta V, Robinson LR, Aanensen KE, Lee B. A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 2010; 84(16): 8033–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weis M, Maisner A. Nipah virus fusion protein: importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol 2015; 94(7–9): 316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4(1): 43–55

    Article  CAS  PubMed  Google Scholar 

  130. Poch O, Blumberg BM, Bougueleret L, Tordo N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 1990; 71(5): 1153–1162

    Article  CAS  PubMed  Google Scholar 

  131. Magoffin DE, Halpin K, Rota PA, Wang LF. Effects of single amino acid substitutions at the E residue in the conserved GDNE motif of the Nipah virus polymerase (L) protein. Arch Virol 2007; 152(4): 827–832

    Article  CAS  PubMed  Google Scholar 

  132. Kaliappan A, Kaliappan V, Lakshmi JT, Raja S, Nikhat SS, Vidya MS, Saranya M, Sagar T, Chenna KD. Nipah amidst COVID-19 pandemic, another re-emerging infectious disease of pandemic potential—a narrative review. Maedica (Bucur) 2022; 17(2): 464–470

    PubMed  Google Scholar 

  133. Hassan MZ, Sazzad HMS, Luby SP, Sturm-Ramirez K, Bhuiyan MU, Rahman MZ, Islam MM, Stroher U, Sultana S, Kafi MAH, Daszak P, Rahman M, Gurley ES. Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013–2014. Emerg Infect Dis 2018; 24(1): 15–21

    Article  PubMed  PubMed Central  Google Scholar 

  134. Escaffre O, Borisevich V, Carmical JR, Prusak D, Prescott J, Feldmann H, Rockx B. Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 2013; 87(6): 3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7(4): 308–311

    Article  PubMed  Google Scholar 

  136. Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ, Annand EJ, Borisevich V, Agans KN, Sutton R, Nargi R, Majedi M, Fenton KA, Reichard W, Bombardi RG, Geisbert TW, Crowe JE Jr. Potent Henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein. Cell 2020; 183(6): 1536–1550.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002; 161(6): 2153–2167

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 2011; 85(15): 7658–7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lo MK, Miller D, Aljofan M, Mungall BA, Rollin PE, Bellini WJ, Rota PA. Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 2010; 404(1): 78–88

    Article  CAS  PubMed  Google Scholar 

  140. Elvert M, Sauerhering L, Maisner A. Cytokine induction in Nipah virus-infected primary human and porcine bronchial epithelial cells. J Infect Dis 2020; 221(Suppl 4): S395–S400

    Article  CAS  PubMed  Google Scholar 

  141. Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000 Res 2019; 8: 1763

    Article  CAS  Google Scholar 

  142. Becker N, Maisner A. Nipah virus impairs autocrine IFN signaling by sequestering STAT1 and STAT2 into inclusion bodies. Viruses 2023; 15(2): 554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30(3): 357–372.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mathieu C, Dhondt KP, Chalons M, Mely S, Raoul H, Negre D, Cosset FL, Gerlier D, Vives RR, Horvat B. Heparan sulfate-dependent enhancement of henipavirus infection. MBio 2015; 6(2): e02427–14

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S, Raoul H, Cosset FL, Gerlier D, Wild TF, Horvat B. Nipah virus uses leukocytes for efficient dissemination within a host. J Virol 2011; 85(15): 7863–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maisner A, Neufeld J, Weingartl H. Organ and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 2009; 102(6): 1014–1023

    CAS  PubMed  Google Scholar 

  147. Stachowiak B, Weingartl HM. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. PLoS One 2012; 7(1): e30855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, Scott D, Fischer ER, Feldmann H, de Wit E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012; 2(1): 736

    Article  PubMed  PubMed Central  Google Scholar 

  149. Devnath P, Wajed S, Chandra Das R, Kar S, Islam I, Masud H. The pathogenesis of Nipah virus: a review. Microb Pathog 2022; 170: 105693

    Article  CAS  PubMed  Google Scholar 

  150. de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235(2): 196–205

    Article  PubMed  PubMed Central  Google Scholar 

  151. Geisbert TW, Feldmann H, Broder CC. Animal challenge models of henipavirus infection and pathogenesis. Curr Top Microbiol Immunol 2012; 359: 153–177

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 2007; 136(4): 266–272

    Article  CAS  PubMed  Google Scholar 

  153. Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M. Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 2005; 79(12): 7528–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, Embury-Hyatt C, Kobasa D, Weingartl HM. Pathogenicity of Nipah henipavirus Bangladesh in a swine host. Sci Rep 2019; 9(1): 5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Juelich T, Smith J, Freiberg AN. Syrian golden hamster model for Nipah virus infection. Methods Mol Biol 2023; 2682: 219–229

    Article  CAS  PubMed  Google Scholar 

  156. Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010; 91(3): 765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, Park A, Lee B, Komeno T, Furuta Y, Freiberg AN. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8(1): 7604

    Article  PubMed  PubMed Central  Google Scholar 

  158. Georges-Courbot MC, Contamin H, Faure C, Loth P, Baize S, Leyssen P, Neyts J, Deubel V. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 2006; 50(5): 1768–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN, Broder CC. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 2010; 5(5): e10690

    Article  PubMed  PubMed Central  Google Scholar 

  160. Liu J, Coffin KM, Johnston SC, Babka AM, Bell TM, Long SY, Honko AN, Kuhn JH, Zeng X. Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight 2019; 4(14): e129629

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lampejo T. The potential threat of Nipah virus. Clin Med (Lond) 2022; 22(5): 497

    Article  PubMed  Google Scholar 

  162. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, Rollin PE, Comer JA, Ksiazek TG, Hossain MJ, Gurley ES, Breiman RF, Bellini WJ, Rota PA. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 2005; 11(10): 1594–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Alam AM. Nipah virus, an emerging zoonotic disease causing fatal encephalitis. Clin Med (Lond) 2022; 22(4): 348–352

    Article  PubMed  Google Scholar 

  164. Sejvar JJ, Hossain J, Saha SK, Gurley ES, Banu S, Hamadani JD, Faiz MA, Siddiqui FM, Mohammad QD, Mollah AH, Uddin R, Alam R, Rahman R, Tan CT, Bellini W, Rota P, Breiman RF, Luby SP. Long-term neurological and functional outcome in Nipah virus infection. Ann Neurol 2007; 62(3): 235–242

    Article  PubMed  Google Scholar 

  165. Harit AK, Ichhpujani RL, Gupta S, Gill KS, Lal S, Ganguly NK, Agarwal SP. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J Med Res 2006; 123(4): 553–560

    CAS  PubMed  Google Scholar 

  166. Homaira N, Rahman M, Hossain MJ, Nahar N, Khan R, Rahman M, Podder G, Nahar K, Khan D, Gurley ES, Rollin PE, Comer JA, Ksiazek TG, Luby SP. Cluster of Nipah virus infection, Kushtia District, Bangladesh, 2007. PLoS One 2010; 5(10): e13570

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chandni R, Renjith TP, Fazal A, Yoosef N, Ashhar C, Thulaseedharan NK, Suraj KP, Sreejith MK, Sajeeth Kumar KG, Rajendran VR, Remla Beevi A, Sarita RL, Sugunan AP, Arunkumar G, Mourya DT, Murhekar M. Clinical manifestations of Nipah virus-infected patients who presented to the emergency department during an outbreak in Kerala State in India, May 2018. Clin Infect Dis 2020; 71(1): 152–157

    Article  PubMed  Google Scholar 

  168. Tan KS, Tan CT, GOH KJ. Epidemiological aspects of Nipah virus infection. Neurol J Southeast Asia 1999; 4: 77–81

    Google Scholar 

  169. Abdullah S, Tan CT. Henipavirus encephalitis. Handb Clin Neurol 2014; 123: 663–670

    Article  PubMed  Google Scholar 

  170. Thomas B, Chandran P, Lilabi MP, George B, Sivakumar CP, Jayadev VK, Bindu V, Rajasi RS, Vijayan B, Mohandas A, Hafeez N. Nipah virus infection in Kozhikode, Kerala, South India, in 2018: epidemiology of an outbreak of an emerging disease. Indian J Community Med 2019; 44(4): 383–387

    Article  PubMed  PubMed Central  Google Scholar 

  171. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, Murugasu P, Loh YL, Chong HT, Tan KS, Thayaparan T, Kumar S, Jusoh MR. Relapsed and late-onset Nipah encephalitis. Ann Neurol 2002; 51(6): 703–708

    Article  PubMed  Google Scholar 

  172. Tan CT, Wong KT. Infections among contacts of patients with Nipah virus, India. Emerg Infect Dis 2020; 26(8): 1963

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ochani RK, Batra S, Shaikh A, Asad A. Nipah virus—the rising epidemic: a review. Infez Med 2019; 27(2): 117–127

    PubMed  Google Scholar 

  174. Erbar S, Maisner A. Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 2010; 7(1): 305

    Article  PubMed  PubMed Central  Google Scholar 

  175. Chakraborty S, Deb B, Barbhuiya PA, Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Res 2019; 263: 129–138

    Article  CAS  PubMed  Google Scholar 

  176. Aditi SM, Shariff M. Nipah virus infection: a review. Epidemiol Infect 2019; 147: e95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ambat AS, Zubair SM, Prasad N, Pundir P, Rajwar E, Patil DS, Mangad P. Nipah virus: a review on epidemiological characteristics and outbreaks to inform public health decision making. J Infect Public Health 2019; 12(5): 634–639

    Article  PubMed  Google Scholar 

  178. Banerjee S, Niyas VKM, Soneja M, Shibeesh AP, Basheer M, Sadanandan R, Wig N, Biswas A. First experience of ribavirin postexposure prophylaxis for Nipah virus, tried during the 2018 outbreak in Kerala, India. J Infect 2019; 78(6): 491–503

    Article  PubMed  Google Scholar 

  179. Aljofan M, Saubern S, Meyer AG, Marsh G, Meers J, Mungall BA. Characteristics of Nipah virus and Hendra virus replication in different cell lines and their suitability for antiviral screening. Virus Res 2009; 142(1–2): 92–99

    Article  CAS  PubMed  Google Scholar 

  180. Wright PJ, Crameri G, Eaton BT. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Arch Virol 2005; 150(3): 521–532

    Article  CAS  PubMed  Google Scholar 

  181. Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, Chew NK, Chua KB, Lam SK. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49(6): 810–813

    Article  CAS  PubMed  Google Scholar 

  182. Arunkumar G, Devadiga S, McElroy AK, Prabhu S, Sheik S, Abdulmajeed J, Robin S, Sushama A, Jayaram A, Nittur S, Shakir M, Kumar KGS, Radhakrishnan C, Sakeena K, Vasudevan J, Reena KJ, Sarita RL, Klena JD, Spiropoulou CF, Laserson KF, Nichol ST. Adaptive immune responses in humans during Nipah virus acute and convalescent phases of infection. Clin Infect Dis 2019; 69(10): 1752–1756

    Article  CAS  PubMed  Google Scholar 

  183. Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC, Brining D, Callison J, Safronetz D, Marzi A, Kercher L, Long D, Broder CC, Feldmann H, Geisbert TW. A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 2010; 84(19): 9831–9839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gomez Roman R, Cherian NG, Wong WF, Chang LY. The immunobiology of Nipah virus. Microorganisms 2022; 10(6): 1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, Patel NR, Klena JD, Nichol ST, Cihlar T, Zaki SR, Feldmann H, Spiropoulou CF, de Wit E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med 2019; 11(494): eaau9242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005; 436(7049): 401–405

    Article  CAS  PubMed  Google Scholar 

  187. Xu K, Rockx B, Xie Y, DeBuysscher BL, Fusco DL, Zhu Z, Chan YP, Xu Y, Luu T, Cer RZ, Feldmann H, Mokashi V, Dimitrov DS, Bishop-Lilly KA, Broder CC, Nikolov DB. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathog 2013; 9(10): e1003684

    Article  PubMed  PubMed Central  Google Scholar 

  188. Playford EG, Munro T, Mahler SM, Elliott S, Gerometta M, Hoger KL, Jones ML, Griffin P, Lynch KD, Carroll H, El Saadi D, Gilmour ME, Hughes B, Hughes K, Huang E, de Bakker C, Klein R, Scher MG, Smith IL, Wang LF, Lambert SB, Dimitrov DS, Gray PP, Broder CC. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-inhuman, randomised, controlled, phase 1 study. Lancet Infect Dis 2020; 20(4): 445–454

    Article  CAS  PubMed  Google Scholar 

  189. Mire CE, Chan YP, Borisevich V, Cross RW, Yan L, Agans KN, Dang HV, Veesler D, Fenton KA, Geisbert TW, Broder CC. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J Infect Dis 2020; 221(Suppl 4): S471–S479

    Article  CAS  PubMed  Google Scholar 

  190. Dang HV, Chan YP, Park YJ, Snijder J, Da Silva SC, Vu B, Yan L, Feng YR, Rockx B, Geisbert TW, Mire CE, Broder CC, Veesler D. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat Struct Mol Biol 2019; 26(10): 980–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lo MK, Spengler JR, Krumpe LRH, Welch SR, Chattopadhyay A, Harmon JR, Coleman-McCray JD, Scholte FEM, Hotard AL, Fuqua JL, Rose JK, Nichol ST, Palmer KE, O’Keefe BR, Spiropoulou CF. Griffithsin inhibits Nipah virus entry and fusion and can protect syrian golden hamsters from lethal Nipah virus challenge. J Infect Dis 2020; 221(Supplement_4): S480–S492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, Johns L, Holbrook MR. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2017; 2(1): 21

    Article  PubMed  PubMed Central  Google Scholar 

  193. van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, Haddock E, Letko M, Avanzato VA, Rissanen I, LaCasse R, Scott D, Bowden TA, Gilbert S, Munster V. A singledose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl Trop Dis 2019; 13(6): e0007462

    Article  PubMed  PubMed Central  Google Scholar 

  194. Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C, Johnson RF, Schnell MJ. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 2019; 4(1): 15

    Article  PubMed  PubMed Central  Google Scholar 

  195. Parvege MM, Rahman M, Nibir YM, Hossain MS. Two highly similar LAEDDTNAQKT and LTDKIGTEI epitopes in G glycoprotein may be useful for effective epitope based vaccine design against pathogenic Henipavirus. Comput Biol Chem 2016; 61: 270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Saha CK, Mahbub Hasan M, Saddam Hossain M, Asraful Jahan M, Azad AK. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac J Trop Med 2017; 10(6): 529–538

    Article  CAS  PubMed  Google Scholar 

  197. Foster SL, Woolsey C, Borisevich V, Agans KN, Prasad AN, Deer DJ, Geisbert JB, Dobias NS, Fenton KA, Cross RW, Geisbert TW. A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci USA 2022; 119(12): e2200065119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Monath TP, Nichols R, Tussey L, Scappaticci K, Pullano TG, Whiteman MD, Vasilakis N, Rossi SL, Campos RK, Azar SR, Spratt HM, Seaton BL, Archambault WT, Costecalde YV, Moore EH, Hawks RJ, Fusco J. Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: model for assessment of live vaccines with neurotropic potential. PLoS Pathog 2022; 18(6): e1010658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines 2021; 6(1): 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens 2022; 11(12): 1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. National Institute of Allergy and Infectious Disease. NIH launches clinical trial of mRNA Nipah virus vaccine. 2022. Available at the website of niaid.nih.gov

    Google Scholar 

  202. Nahar N, Mondal UK, Sultana R, Hossain MJ, Khan MS, Gurley ES, Oliveras E, Luby SP. Piloting the use of indigenous methods to prevent Nipah virus infection by interrupting bats’ access to date palm sap in Bangladesh. Health Promot Int 2013; 28(3): 378–386

    Article  PubMed  Google Scholar 

  203. Gurley ES, Hegde ST, Hossain K, Sazzad HMS, Hossain MJ, Rahman M, Sharker MAY, Salje H, Islam MS, Epstein JH, Khan SU, Kilpatrick AM, Daszak P, Luby SP. Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh. Emerg Infect Dis 2017; 23(9): 1446–1453

    Article  PubMed  PubMed Central  Google Scholar 

  204. Nahar N, Paul RC, Sultana R, Gurley ES, Garcia F, Abedin J, Sumon SA, Banik KC, Asaduzzaman M, Rimi NA, Rahman M, Luby SP. Raw sap consumption habits and its association with knowledge of Nipah virus in two endemic districts in Bangladesh. PLoS One 2015; 10(11): e0142292

    Article  PubMed  PubMed Central  Google Scholar 

  205. Siegel JD, Rhinehart E, Jackson M, Chiarello L; Health Care Infection Control Practices Advisory Committee. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 2007; 35(10 Suppl 2): S65–S164

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jackson MM, Lynch P. Guideline for isolation precautions in hospitals, 1996. Am J Infect Control 1996; 24(3): 203–206

    Article  CAS  PubMed  Google Scholar 

  207. Sazzad HM, Hossain MJ, Gurley ES, Ameen KM, Parveen S, Islam MS, Faruque LI, Podder G, Banu SS, Lo MK, Rollin PE, Rota PA, Daszak P, Rahman M, Luby SP. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 2013; 19(2): 210–217

    Article  PubMed  PubMed Central  Google Scholar 

  208. Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Muller TH, Seltsam A. Inactivation of three emerging viruses-severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus—in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang 2020; 115(3): 146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Discipline Innovation and Development Program of Tangdu Hospital (No. 2021LCYJ025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiqi Chai, Hong Du or Hong Jiang.

Ethics declarations

Conflicts of interest statements Limei Wang, Denghui Lu, Maosen Yang, Shiqi Chai, Hong Du, and Hong Jiang declare that they have no conflicts of interest.

This is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lu, D., Yang, M. et al. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front. Med. 18, 969–987 (2024). https://doi.org/10.1007/s11684-024-1078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-024-1078-2

Keywords