Skip to main content

Advertisement

Log in

Polymeric magnetic nanoparticles: a multitargeting approach for brain tumour therapy and imaging

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The most challenging task in targeting the brain is trespassing the blood–brain barrier (BBB) which restricts the movement of about 98% small molecules. Targeting the central nervous system using magnetic nanoparticles may deliver the drug to the target site along with a contrast imaging property. The use of magnetic nanoparticles can become non-invasive drug targeting and a bio-imaging method for brain cancer. The strategy to apply polymeric nanoparticles as a carrier of magnetic iron oxide nanoparticles can be a promising tool as a multitherapeutic drug delivery approach involving delivery of chemotherapeutic drugs with a magnetic targeting approach, imaging, and hyperthermia. This review will highlight the existing difficulties/barriers in crossing the BBB, types of magnetic materials, polymeric carriers for functionalization of magnetic nanoparticles, and targeting strategies as therapeutic and imaging modalities. Utilization of polymeric magnetic nanoparticles as an efficient targeting platform for better drug delivery and imaging for brain cancer and future prospects are also discussed.

Graphical abstract

Polymeric magnetic nanoparticles as a drug delivery and bio-imaging vehicle for brain cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not Applicable.

References

  1. Vhora I, Patil S, Bhatt P, Gandhi R, Baradia D, Misra A. Receptor-targeted drug delivery: current perspective and challenges. Ther Deliv. 2014;5(9):1007–24.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt P, Narvekar P. Challenges and strategies for drug transport across the blood brain barrier. ARC J Neurosci. 2018;3(3):17–21.

    Google Scholar 

  3. Garanti T, Alhnan MA, Wan KW. The potential of nanotherapeutics to target brain tumors: current challenges and future opportunities. Future Medicine. 2021.

  4. Krol S. Challenges in drug delivery to the brain: nature is against us. J Control Release. 2012;164(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  5. Novoselova MV, German SV, Abakumova TO, Perevoschikov SV, Sergeeva OV, Nesterchuk MV. Multifunctional nanostructured drug delivery carriers for cancer therapy: multimodal imaging and ultrasound-induced drug release. Colloids and Surfaces B: Biointerfaces. 2021;111576.

  6. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces. 2016;8(47):32159–69.

    Article  CAS  PubMed  Google Scholar 

  7. Patil R, Portilla-Arias J, Ding H, Inoue S, Konda B, Hu J. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly (β-L-malic acid). Pharm Res. 2010;27(11):2317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F. Nanoparticles of 2-deoxy-D-glucose functionalized poly (ethylene glycol)-co-poly (trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35(1):518–29.

    Article  CAS  PubMed  Google Scholar 

  9. Agrawal P, Singh RP, Kumari L, Sharma G, Koch B, Rajesh CV. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Materials Science Engineering: C. 2017;74:167–76.

    Article  CAS  Google Scholar 

  10. Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly (butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  11. Timbie KF, Afzal U, Date A, Zhang C, Song J, Miller GW. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release. 2017;263:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Cai P, Shalviri A, Henderson JT, He C, Foltz WD. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer. ACS Nano. 2014;8(10):9925–40.

    Article  CAS  PubMed  Google Scholar 

  13. Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Delivery. 2016;23(4):1261–71.

  14. Lakkadwala S, dos Santos RB, Sun C, Singh J. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J Control Release. 2019;307:247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun X, Chen Y, Zhao H, Qiao G, Liu M, Zhang C. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Delivery. 2018;25(1):1718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX. Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials. 2014;35(21):5591–604.

    Article  CAS  PubMed  Google Scholar 

  17. Shamul JG, Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Lee BJ. Verteporfin-loaded anisotropic poly (beta-amino ester)-based micelles demonstrate brain cancer-selective cytotoxicity and enhanced pharmacokinetics. Int J Nanomed. 2019;14:10047.

    Article  CAS  Google Scholar 

  18. Tian C, Asghar S, Hu Z, Qiu Y, Zhang J, Shao F. Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. Int J Biol Macromol. 2019;136:143–53.

    Article  CAS  PubMed  Google Scholar 

  19. Quader S, Liu X, Chen Y, Mi P, Chida T, Ishii T. cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. J Control Release. 2017;258:56–66.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma AK, Gupta L, Sahu H, Qayum A, Singh SK, Nakhate KT. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res. 2018;35(1):9.

    Article  PubMed  CAS  Google Scholar 

  21. Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly (propyleneimine) dendrimers for brain targeting: comparative in vitro and in vivo assessment. Journal of Colloid Interface Science. 2016;482:142–50.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, He H, Jia X, Lu W-L, Lou J, Wei Y. A dual-targeting nanocarrier based on poly (amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–908.

    Article  CAS  PubMed  Google Scholar 

  23. Mäger I, Meyer AH, Li J, Lenter M, Hildebrandt T, Leparc G. Targeting blood-brain-barrier transcytosis–perspectives for drug delivery. Neuropharmacology. 2017;120:4–7.

    Article  PubMed  CAS  Google Scholar 

  24. Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan Yá, Bajpai S. Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol. 2008;8(7):3247–71.

  25. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.

    Article  CAS  PubMed  Google Scholar 

  26. Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H. Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem. 2006;384(3):593–600.

    Article  CAS  PubMed  Google Scholar 

  27. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomed. 2019;14:8321.

    Article  CAS  Google Scholar 

  29. Maaz K, Mumtaz A, Hasanain S, Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. Journal of Magnetism Magnetic Materials. 2007;308(2):289–95.

    Article  CAS  Google Scholar 

  30. Peng S, Wang C, Xie J, Sun S. Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc. 2006;128(33):10676–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small. 2008;4(11):1925–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong R, Pan T, Li H. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J Magn Magn Mater. 2006;303(1):60–8.

    Article  CAS  Google Scholar 

  33. Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed. 2015;10:2325.

    CAS  Google Scholar 

  34. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008;3(2):169.

    CAS  Google Scholar 

  35. Maaz K, Karim S, Mumtaz A, Hasanain S, Liu J, Duan J. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of Magnetism Magnetic Materials. 2009;321(12):1838–42.

    Article  CAS  Google Scholar 

  36. Deng Y-H, Wang C-C, Hu J-H, Yang W-L, Fu S-K. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A Physicochem Eng Asp. 2005;262(1–3):87–93.

    Article  CAS  Google Scholar 

  37. Wang Z, Xiao P, He N. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon. 2006;44(15):3277–84.

    Article  CAS  Google Scholar 

  38. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:536–9.

    Article  CAS  Google Scholar 

  39. Mukh-Qasem RA, Gedanken AJ. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci. 2005;284(2):489–94.

    Article  PubMed  CAS  Google Scholar 

  40. Pascal C, Pascal J, Favier F, Elidrissi Moubtassim M, Payen CJ, Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chemistry of Materials. 1999;11(1):141–7.

  41. Kekalo K, Koo K, Zeitchick E, Baker I, editors. Microemulsion synthesis of iron core/iron oxide shell magnetic nanoparticles and their physicochemical properties. Materials Research Society symposia proceedings. Materials Research Society. 2012;1416.

  42. Bomatí-Miguel O, Tartaj P, Morales MP, Bonville P, Golla-Schindler U, Zhao XQ. Core–shell iron–iron oxide nanoparticles synthesized by laser-induced pyrolysis. Small. 2006;2(12):1476–83.

    Article  PubMed  CAS  Google Scholar 

  43. Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 2011;7(9):3496–504.

    Article  CAS  PubMed  Google Scholar 

  44. Patsula V, Kosinova L, Lovric M, Ferhatovic Hamzic L, Rabyk M, Konefal R. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Applied Materials. 2016;8(11):7238–47.

    Article  CAS  Google Scholar 

  45. Ağaoğulları D, Madsen SJ, Ögüt B, Koh AL, Sinclair R. Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition. Carbon. 2017;124:170–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang X, Yang L, Zhang H, Tian B, Li R, Hou X. Fluorescent magnetic PEI-PLGA nanoparticles loaded with paclitaxel for concurrent cell imaging, enhanced apoptosis and autophagy in human brain cancer. Colloids Surfaces B: Biointerfaces. 2018;172:708–17.

    Article  CAS  PubMed  Google Scholar 

  47. Mosafer J, Abnous K, Tafaghodi M, Jafarzadeh H, Ramezani M. Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe3O4 nanoparticles for simultaneous diagnostic and therapeutic applications. Colloids Surf A Physicochem Eng Asp. 2017;514:146–54.

    Article  CAS  Google Scholar 

  48. Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surfaces B: Biointerfaces. 2009;68(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  49. Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32(7):1890–905.

    Article  CAS  PubMed  Google Scholar 

  50. Prabhu S, Goda JS, Mutalik S, Mohanty BS, Chaudhari P, Rai S. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin. Nanoscale. 2017;9(30):10919–32.

    Article  CAS  PubMed  Google Scholar 

  51. Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O 6-benzylguanine to brain tumors. ACS Nano. 2014;8(10):10383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme. J Biomed Nanotechnol. 2016;12(2):347–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31(24):6317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oleksa V, Macková H, Patsula V, Dydowiczová A, Janoušková O, Horák D. Doxorubicin-conjugated iron oxide nanoparticles: surface engineering and biomedical investigation. Chem Plus Chem. 2020;85(6):1156–63.

    CAS  PubMed  Google Scholar 

  55. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Future Medicine. 2007;23–29.

  56. Andhariya N, Chudasama B, Mehta R, Upadhyay R. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J Nanopart Res. 2011;13(4):1677–88.

    Article  CAS  Google Scholar 

  57. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  CAS  PubMed  Google Scholar 

  58. Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan N, Sahoo SK. Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces. 2011;3(3):842–56.

    Article  CAS  PubMed  Google Scholar 

  59. Oku N, Yamashita M, Katayama Y, Urakami T, Hatanaka K, Shimizu K. PET imaging of brain cancer with positron emitter-labeled liposomes. Drug Delivery. 2011;403(1–2):170–7.

    CAS  Google Scholar 

  60. Georgieva JV, Hoekstra D, Zuhorn IS. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics. 2014;6(4):557–83.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv. 2013;10(7):927–55.

    Article  CAS  PubMed  Google Scholar 

  62. Chertok B, David AE, Yang VC. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release. 2011;155(3):393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brazel CS. Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res. 2009;26(3):644–56.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J-P, Yang P-C, Ma Y-H, Wu T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohyd Polym. 2011;84(1):364–72.

    Article  CAS  Google Scholar 

  65. Joshi B, Kaur J, Khan E, Kumar A, Joshi A. Ultrasonic atomizer driven development of doxorubicin-chitosan nanoparticles as anticancer therapeutics: evaluation of anionic cross-linkers. J Drug Delivery Sci Technol. 2020:101618.

  66. Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.

    Article  CAS  PubMed  Google Scholar 

  67. Vijayakumar MR, Kosuru R, Vuddanda PR, Singh SK, Singh S. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: an evidence for prolonged systemic circulation and passive brain targeting. J Drug Delivery Sci Technol. 2016;33:125–35.

    Article  CAS  Google Scholar 

  68. Su X, Zhan X, Tang F, Yao J, Wu J. Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr Nanosci. 2011;7(1):37–46.

    Article  CAS  Google Scholar 

  69. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye F, Barrefelt Å, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35(12):3885–94.

    Article  CAS  PubMed  Google Scholar 

  71. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci. 2013;4(10):1352–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Joshi B, Joshi A. Ultrasound-based drug delivery system. Bioelectronics and Medical Devices Elsevier. 2019. p. 241–60.

  73. Fisher DG, Price RJ. Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system. Front Pharmacol. 2019;10:1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses. 2009;73(1):80–2.

    Article  CAS  PubMed  Google Scholar 

  75. Little WT, Davies CH. Emerging strategies to treat the brain, behind its barrier. Neuropharmacology. 2017;120:1–3.

    Article  CAS  PubMed  Google Scholar 

  76. Joshi A, Chaudhari R, Jayant RD. On-demand controlled drug delivery. Advances in Personalized Nanotherapeutics. Springer; 2017. p. 131–56.

  77. van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U, Scholz R. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30(1):52–7.

    Article  PubMed  CAS  Google Scholar 

  78. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 2012;5(2):173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008;29(29):4012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomed Nanotechnol Biol Med. 2014;10(1):149–57.

  81. Sundaresan V, Menon JU, Rahimi M, Nguyen KT, Wadajkar AS. Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm. 2014;466(1–2):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W. pH/temperature sensitive magnetic nanogels conjugated with Cy5. 5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials. 2013;34(30):7418–28.

  83. Orive G, Ali O, Anitua E, Pedraz J, Emerich D. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim Biophys Acta Rev Cancer. 2010;1806(1):96–107.

    Article  CAS  Google Scholar 

  84. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.

    Article  PubMed  Google Scholar 

  85. Iv M, Samghabadi P, Holdsworth S, Gentles A, Rezaii P, Harsh G. Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced MRI: a pilot study. Radiology. 2019;290(1):198–206.

    Article  PubMed  Google Scholar 

  86. Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. Int J Nanomed. 2014;9:273.

    Article  Google Scholar 

  87. Kale SS, Burga RA, Sweeney EE, Zun Z, Sze RW, Tuesca A. Composite iron oxide–Prussian blue nanoparticles for magnetically guided T1-weighted magnetic resonance imaging and photothermal therapy of tumors. Int J Nanomed. 2017;12:6413.

    Article  CAS  Google Scholar 

  88. Hamilton AM, Aidoudi-Ahmed S, Sharma S, Kotamraju VR, Foster PJ, Sugahara KN. Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. J Mol Med. 2015;93(9):991–1001.

    Article  CAS  PubMed  Google Scholar 

  89. Thawani JP, Amirshaghaghi A, Yan L, Stein JM, Liu J, Tsourkas A. Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small. 2017;13(37):1701300.

    Article  CAS  Google Scholar 

  90. Cheng VW, Soto MS, Khrapitchev AA, Perez-Balderas F, Zakaria R, Jenkinson MD. VCAM-1–targeted MRI enables detection of brain micrometastases from different primary tumors. Clin Cancer Res. 2019;25(2):533–43.

    Article  CAS  PubMed  Google Scholar 

  91. Grauer O, Jaber M, Hess K, Weckesser M, Schwindt W, Maring S. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol. 2019;141(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  92. Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006;89(1):338–47.

    Article  CAS  PubMed  Google Scholar 

  93. Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159.

    Article  CAS  PubMed Central  Google Scholar 

  94. Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe 3 O 4 magnetic nanoparticles on erythrocytes. Sci Rep. 2015;5(1):1–15.

    Article  Google Scholar 

  95. Wilhelm C, Fortin J-P, Gazeau FJ. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J Nanosci Nanotechnol. 2007;7(8):2933–7.

    Article  CAS  PubMed  Google Scholar 

  96. Malhotra N, Chen JR, Sarasamma S, Audira G, Siregar P, Liang ST, et al. Ecotoxicity assessment of Fe3O4 magnetic nanoparticle exposure in adult zebrafish at an environmental pertinent concentration by behavioral and biochemical testing. Nanomaterials. 2019;9(6):873.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

BJ likes to acknowledge the Department of Science and Technology-INSPIRE fellowship (IF170325) and AJ would like thank the DST-INSPIRE Faculty award (DST/INSPIRE/04/2015/000713) for financial assistance.

Funding

DST-INSPIRE Faculty award (DST/INSPIRE/04/2015/000713).

Author information

Authors and Affiliations

Authors

Contributions

BJ has collected the research data and wrote the manuscript; AJ is the corresponding author and proofread the manuscript.

Corresponding author

Correspondence to Abhijeet Joshi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have approved the manuscript submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, B., Joshi, A. Polymeric magnetic nanoparticles: a multitargeting approach for brain tumour therapy and imaging. Drug Deliv. and Transl. Res. 12, 1588–1604 (2022). https://doi.org/10.1007/s13346-021-01063-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01063-9

Keywords

Navigation